

Kahramanmaraş - Gaziantep Türkiye M7.7 Earthquake, 6 February 2023 (04:17 GMT+03:00)

Strong Ground Motion and Building Damage Estimations Preliminary Report (v4)

Ufuk Hancılar, Karin Şeşetyan, Eser Çaktı Nesrin Yenihayat, Hakan Süleyman, Nurullah Açıkgöz, Şahin Dede, Şükran Acar

09.02.2023 (v4)

08.02.2023 (v3)

07.02.2023 (v2)

06.02.2023 (v1)

What is new?

V4 (09.02.2023):

More info on the strong ground motion recordings!

Acc-vel-disp time histories, FAS and horizontal resp. spectra plots updated and vertical resp. spectra plots added!

Maps showing the PGA values of the stations along with the active fault lines provided! Aftershock activity map presented!

PGA and PGV residual analyses with four GMPEs for the M7.7, M7.6 and M6.6 (6 Feb 2023) earthquakes provided!

Previous Versions

V3 (08.02.2023):

More info on the strong ground motion recordings!

Strong ground motion records, downloaded fom AFAD website and processed! Acc-vel-disp time histories, FAS and elastic acc. resp. spectra plots!

Kahramanmaras city scale building damage estimation with different methods: Modified Acceleration-Displacement Response Spectrum Method, Capacity Spectrum Method and Displacement Coefficient Method.

It is estimated that approximately 40% of the Kahramanmaras's building inventory in (moderate+extensive+complete) damage state!

V2 (07.02.2023):

Ground motion distribution maps with different GMPEs and intensity prediction equations!

Regional scale damage estimation maps with different ground motion inputs!

Kahramanmaras city scale damage estimation maps with different ground motion inputs!

Acceleration, velocity and displacement time history plots, Fourier amplitude spectra plots of the recorded data!

V1 (06.02.2023):

Rapid estimation of spatial distributions of strong ground motion parameters!

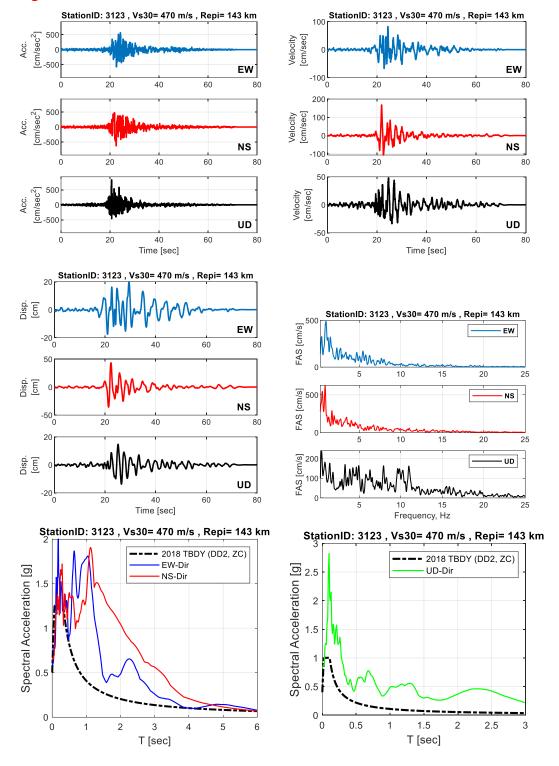
Intensity based, regional scale, rapid building damage estimation!

Spectral acceleration-displacement based rapid building damage estimation for Kahramanmaras city!

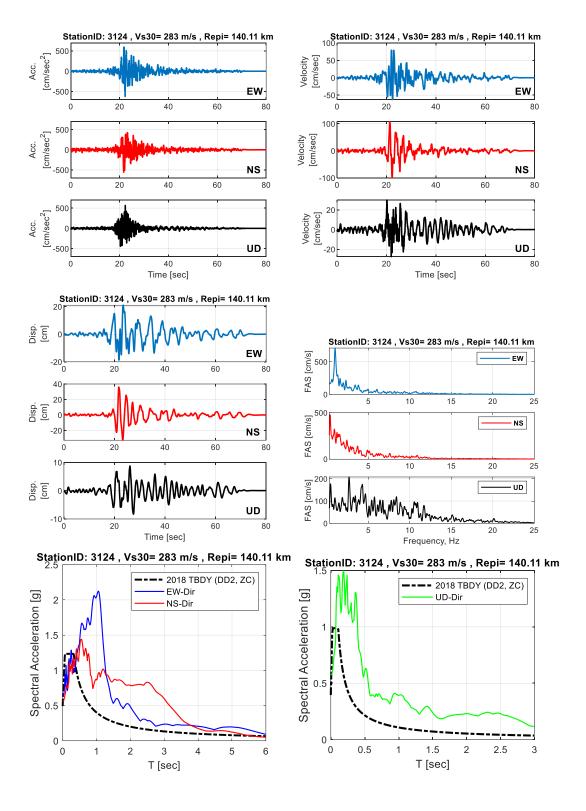
Note:

The information provided in this report is presented for scientific research purposes.

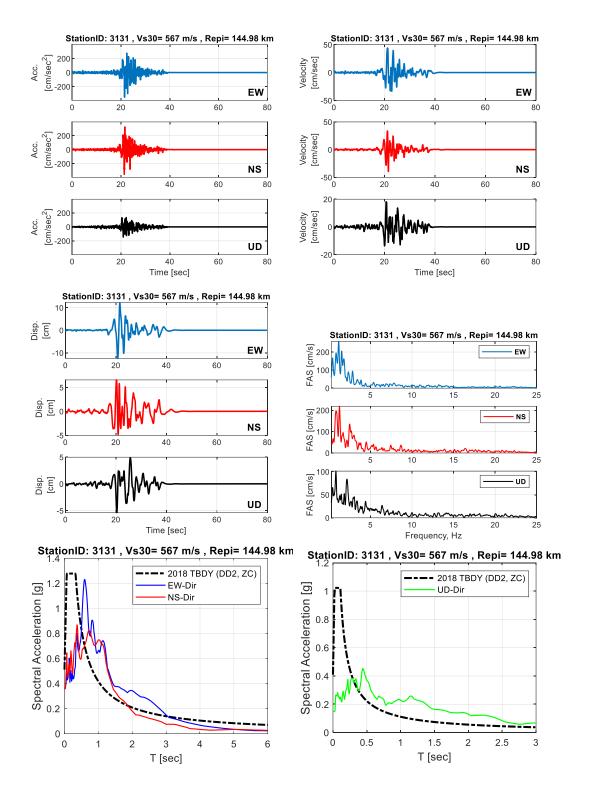
Ground motion and building damage estimation analyses conducted with ELER (Earthquake Loss Estimation Routine) software.

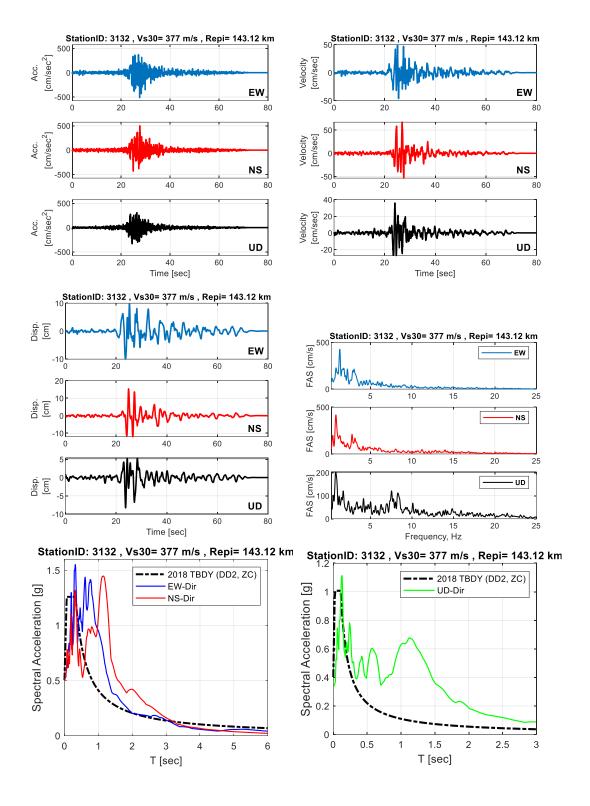

https://eqe.boun.edu.tr/en/eler-tool

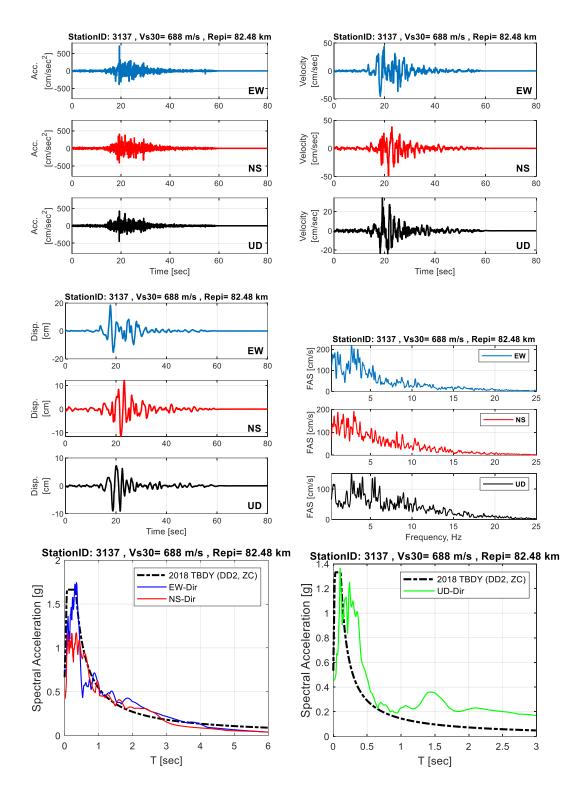
STRONG GROUND MOTION RECORDINGS

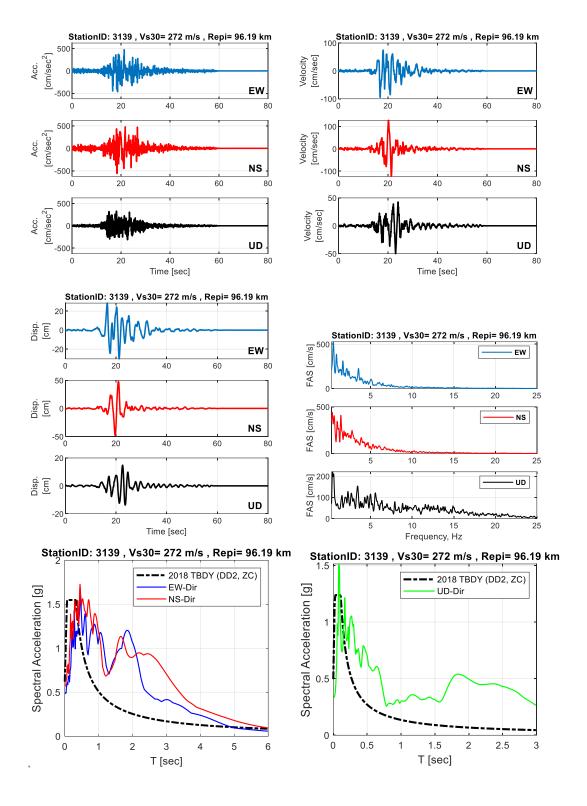

The recordings included herewith can not be reached at AFAD website as of today. Data may be under revision or the site overloaded. The data and thus the plots presented are subject to change.

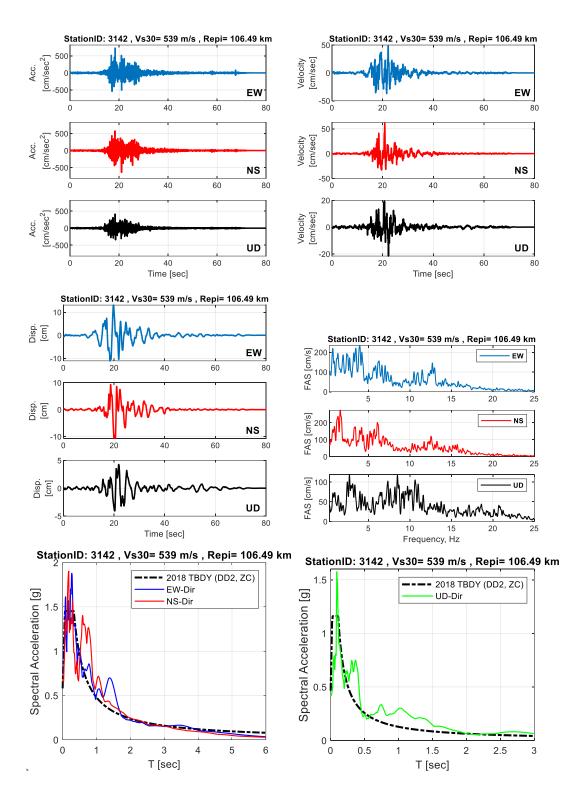
6 February 2023 (04:17) Kahramanmaraş-Türkiye M7.7 Earthquake Preliminary Report (v4)

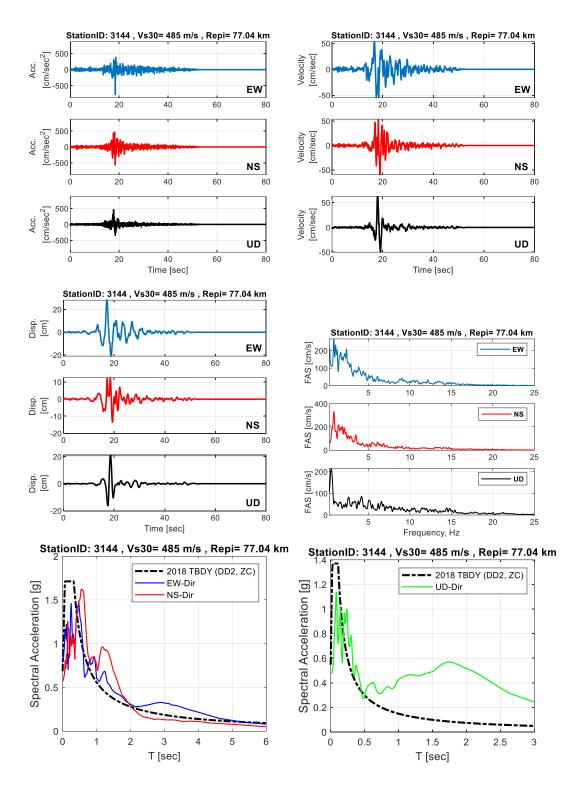


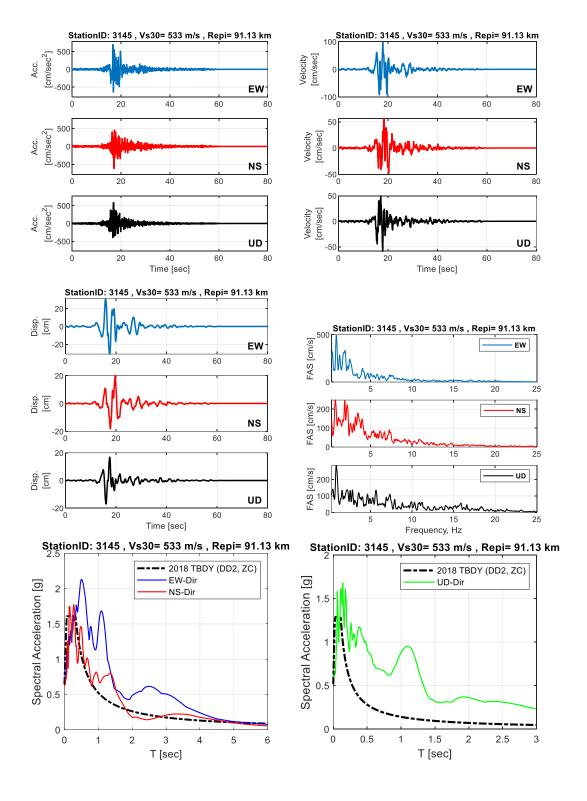




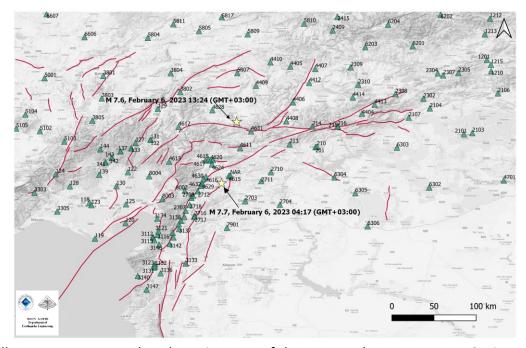


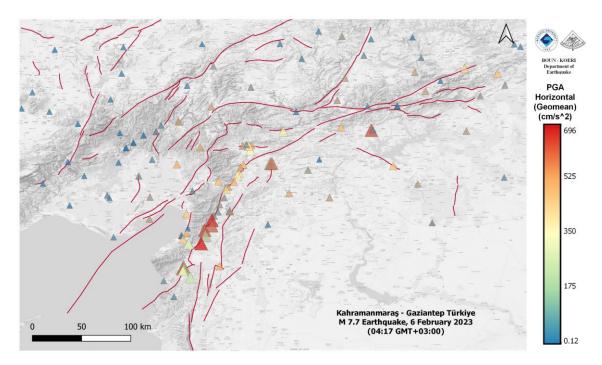


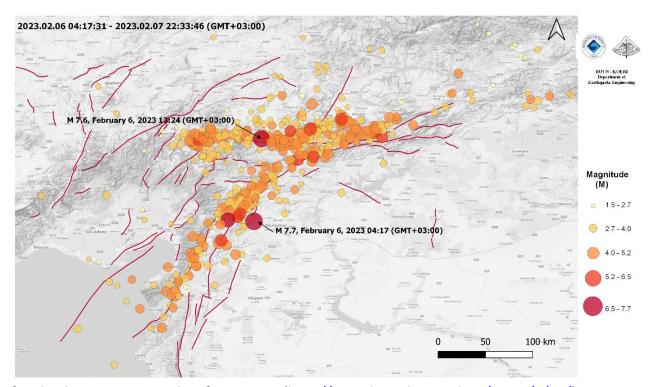




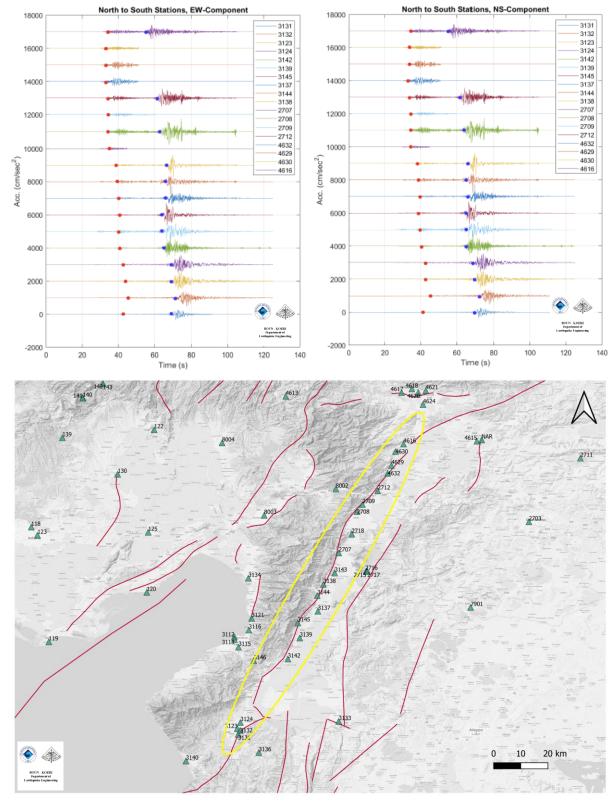
ID	Lat.	Lon.	Vs30 (m/s)	R _{epi} (km)	Site Class (EC8)	Comp.	PGA (cm/s ²)	PGV (cm/s)	PGD (cm)	AI (m/s)	Dur 5- 95 EW (sec)	CAV (m/s)
		37.9296			(E00)	EW	172.19	33.57	12.65	0.69	7.72	6.05
213	37.7967			96.5		NS	244.17	52.45	20.22	1.03	7.71	7.54
						UD	195.96	23.08	9.15	0.45	7.71	4.61
						EW	330.38	20.93	3.08	0.80	4.12	6.89
1213	39.2310	40.4774		372.1		NS	244.56	11.69	1.69	0.45	8.40	5.90
						UD	185.15	4.58	0.86	0.23	7.07	4.17
						EW	215.96	9.93	1.67	0.26	9.97	5.09
2302	38.3923	39.6754	907	261.7	A	NS	199.81	7.63	1.15	0.20	11.98	4.76
						UD	112.06	5.02	1.57	0.08	21.59	3.87
						EW	163.86	22.92	5.45	0.34	36.63	8.02
2308	38.4506	39.3102	450	237.3	В	NS	314.07	26.57	5.49	0.59	20.49	9.03
						UD	356.06	7.53	1.53	0.33	12.24	5.83
				113.6	В	EW	81.75	6.45	1.60	0.16	24.86	4.63
3115	36.5463	36.1646	424			NS	137.39	14.30	2.42	0.33	24.70	6.36
						UD	134.77	6.55	0.94	0.18	26.88	4.32
		36.1597	470	143.0	В	EW	574.78	82.84	20.13	7.14	16.93	31.00
3123	36.2142					NS	629.02	167.80	43.45	8.89	12.71	33.25
						UD	833.04	48.19	14.77	4.44	14.38	23.44
	36.2387	36.1722	283	140.1	С	EW	622.65	79.06	21.02	7.22	19.22	32.42
3124						NS	556.34	107.25	35.98	5.82	21.57	30.17
						UD	564.23	29.97	8.76	3.00	17.08	18.97
			567	145.0	В	EW	350.96	43.98	12.45	1.61	7.64	11.31
3131	36.1912	36.1633				NS	354.34	39.39	6.57	1.26	8.16	9.51
						UD	145.35	18.15	5.36	0.34	14.30	5.92
						EW	513.00	49.36	10.01	4.24	17.56	23.58
3132	36.2067	36.1716	377	143.1	В	NS	498.87	67.08	15.36	3.60	13.43	21.48
						UD	333.33	35.94	8.25	1.75	13.69	14.68
					С	EW	363.82	40.81	7.88	3.44	32.97	25.66
3136	36.1159	36.2472	344	148.4		NS	516.50	49.72	11.27	3.77	27.82	25.39
						UD	212.01	22.07	6.28	1.05	31.31	14.06
					В	EW	714.51	45.64	18.48	3.52	16.52	21.45
3137	36.6929	36.4885	688	82.5		NS	412.31	49.04	12.26	3.43	17.09	21.81
						UD	448.07	34.11	9.05	2.18	16.71	17.20
		36.4144	272	96.2	С	EW	475.23	94.80	30.18	6.68	29.67	31.73
3139	36.5838					NS	557.22	127.92	47.94	8.21	37.07	36.39
						UD	328.16	49.91	14.82	2.80	15.33	20.03
		36.3661	539	106.5	В	EW	730.50	48.94	13.15	5.61	11.95	25.35
3142	36.4980					NS	640.58	62.41	10.74	5.31	11.49	23.84
						UD	412.74	21.59	4.27	1.84	13.14	15.04


Department of Earthquake Engineering – Bogazici University

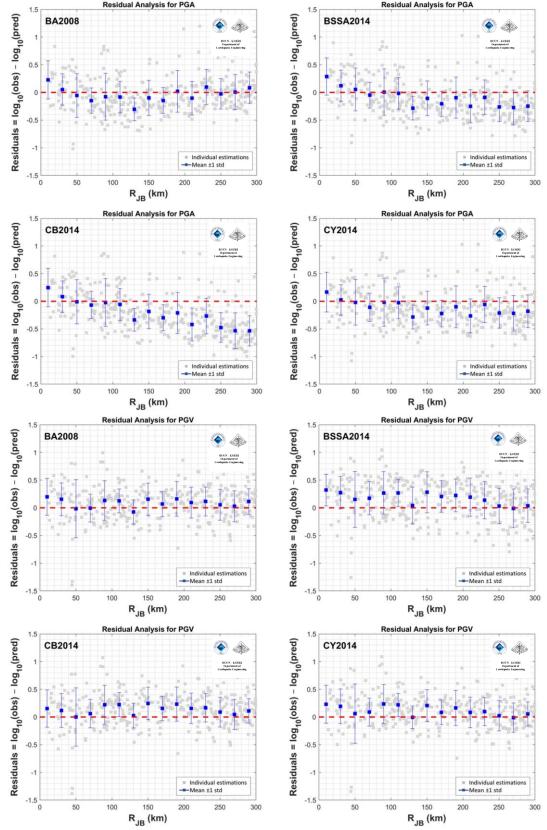

ID	Lat.	Lon.	Vs30 (m/s)	R _{epi} (km)	Site Class (EC8)	Comp.	PGA (cm/s²)	PGV (cm/s)	PGD (cm)	AI (m/s)	Dur 5- 95 EW (sec)	CAV (m/s)
	36.7569					EW	779.18	54.53	28.12	3.47	41.68	24.61
3144		36.4857	485	77.0	В	NS	564.00	59.66	13.56	3.36	33.42	21.19
						UD	465.47	62.19	21.05	1.27	16.50	12.09
						EW	694.72	97.38	31.06	6.20	11.30	22.81
3145	36.6454	36.4064	533	91.1	В	NS	617.10	56.16	20.09	3.64	13.84	20.21
						UD	585.57	58.57	16.92	2.93	10.53	16.64
						EW	317.18	27.55	7.17	2.90	16.99	18.10
3146	36.4908	36.2270		114.6		NS	448.17	22.61	6.85	4.35	16.82	21.47
						UD	253.10	15.68	4.80	1.48	17.76	13.52
						EW	312.54	34.70	7.87	2.42	44.01	22.23
4611	37.7472	37.2843	731	55.3	В	NS	327.28	29.99	6.64	2.63	43.13	22.95
						UD	162.42	10.22	2.39	0.69	47.99	12.23
	37.3868	37.1380	484	13.8	В	EW	556.63	111.20	24.18	5.78	47.10	31.95
4615						NS	580.24	75.61	22.11	5.42	46.86	30.79
						UD	658.44	46.61	9.57	2.75	35.99	19.93
						EW	313.00	23.79	9.12	2.49	43.89	21.83
4620	37.5857	36.8985	484	41.3	В	NS	296.32	21.22	5.37	2.21	42.10	20.18
						UD	174.21	9.76	2.33	1.03	46.75	21.83
						EW	312.52	44.23	13.68	4.29	45.85	29.28
4624	37.5361	36.9177	280	29.7	C	NS	339.40	41.39	13.34	3.77	46.05	27.10
						UD	152.14	24.28	4.80	1.06	43.82	14.75
			382	22.5	С	EW	246.73	17.51	3.16	1.34	10.38	8.70
4629	37.2874	36.7887				NS	337.84	27.84	4.61	2.02	9.73	10.41
						UD	121.93	6.47	1.72	0.24	12.53	3.98
			37 428	24.1	В	EW	282.83	31.60	7.22	1.48	9.90	9.38
4632	37.2560	36.7737				NS	349.34	43.02	8.07	2.09	9.36	10.52
						UD	186.63	11.77	1.91	0.57	12.00	6.11
						EW	542.49	66.94	23.60	3.14	44.93	23.35
NAR	37.3919	37.1574		15.4		NS	627.41	62.44	18.16	3.42	40.48	23.44
						UD	349.40	32.06	11.76	1.70	36.44	16.49


The yellow stars correspond to the epicenters of the **M** 7.7 Kahramanmaraş – Gaziantep and **M** 7.6 Ekinözü – Kahramanmaraş Earthquakes occurred on 6 February 2023. AFAD stations are shown with green triangles. Red lines represent the faults compiled from Active Fault Maps of Turkey, MTA (Mineral Research & Exploration General Directorate).

AFAD stations' PGA values from of the **M** 7.7 Kahramanmaraş – Gaziantep Earthquake. Red lines represent the faults compiled from Active Fault Maps of Turkey, MTA (Mineral Research & Exploration General Directorate).



Aftershock activity. Data taken from KOERI (http://www.koeri.boun.edu.tr/sismo/2/en/). Red lines represent the faults compiled from Active Fault Maps of Turkey, MTA (Mineral Research & Exploration General Directorate).

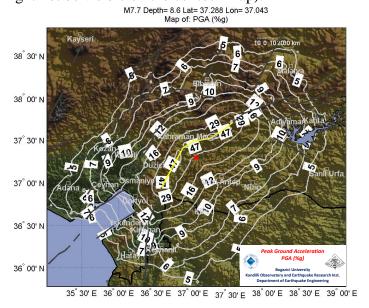


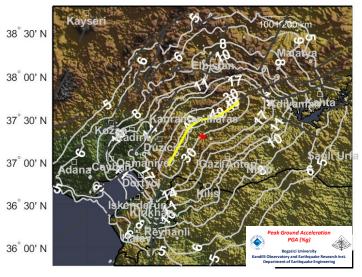
Acceleration records of the stations on the Amanos segment (within the yellow ellipse) from SW to NE. Red lines represent the faults compiled from Active Fault Maps of Turkey, MTA (Mineral Research & Exploration General Directorate).

PGA and PGV residual analyses to investigate predictive capacity of four GMPEs for the M7.7, M7.6 and M6.6 (6 Feb 2023) earthquakes.

6 February 2023 (04:17) Kahramanmaraş-Türkiye M7.7 Earthquake

Preliminary Report (v4)

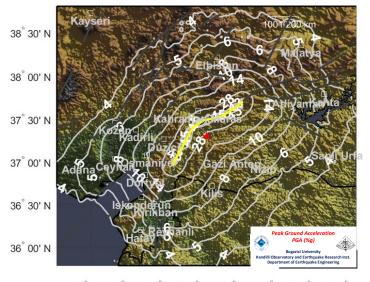



PGA MAPS

Associated fault line automatically chosen from the fault database. Ground motion estimations done without recorded data.

GMPE: CY2008 Computed values ranging between 0.011g and 0.66g (min. and max. computed values might not be visible on the contour map).

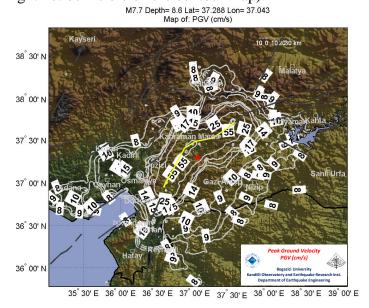
GMPE: CY2014 Computed values ranging between 0.014g and 0.69g (min. and max. computed values might not be visible on the contour map).



35° 30' B6° 00' B6° 30' B7° 00' B7° 30' B8° 00' B8° 30' B9° 00' E

GMPE: ASB2014 Computed values ranging between 0.019g and 0.55g (min. and max. computed values might not be visible on the contour map).

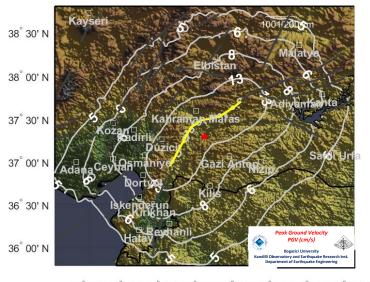
 $35^{\circ}\,30'\, \&6^{\circ}\,00'\,\&6^{\circ}\,30'\,\&7^{\circ}\,00'\,\&7^{\circ}\,30'\,\&8^{\circ}\,00'\,\&8^{\circ}\,30'\,\&9^{\circ}\,00'\,\&$



PGV MAPS

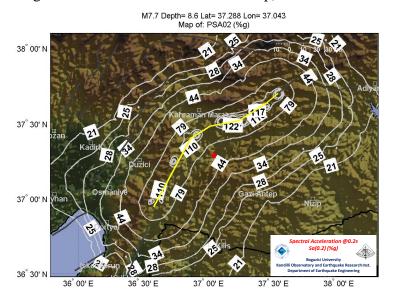
Associated fault line automatically chosen from the fault database. Ground motion estimations done without recorded data.

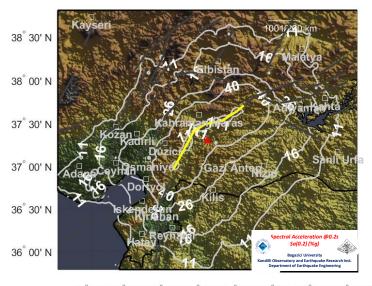
GMPE: CY2008 Computed values ranging between 2.2cm/s and 84cm/s (min. and max. computed values might not be visible on the contour map).


GMPE: CY2014 Computed values ranging between 2.8cm/s and 88cm/s (min. and max. computed values might not be visible on the contour map).

GMPE: ASB2014 Computed values ranging between 2.9cm/s and 38cm/s (min. and max. computed values might not be visible on the contour map).

35° 30' E36° 00' E36° 30' E37° 00' E37° 30' E38° 00' E38° 30' E39° 00' E

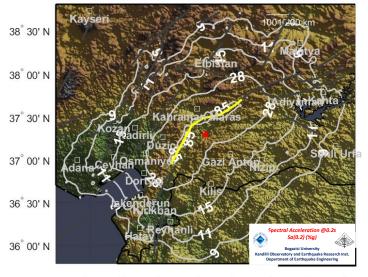



Sa(0.2s) MAPS

Associated fault line automatically chosen from the fault database. Ground motion estimations done without recorded data.

GMPE: CY2008 Computed values ranging between 0.027g and 1.68g (min. and max. computed values might not be visible on the contour map).

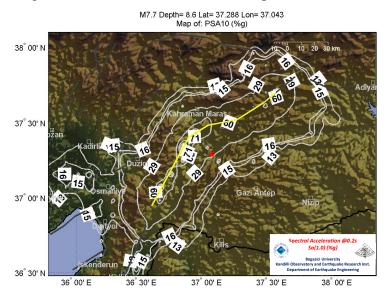
GMPE: CY2014 Computed values ranging between 0.02g and 1.60g (min. and max. computed values might not be visible on the contour map).



 $35^{\circ}30'$ $\boxplus 6^{\circ}00'$ $\boxplus 6^{\circ}30'$ $\boxplus 7^{\circ}00'$ $\boxplus 7^{\circ}30'$ $\boxplus 8^{\circ}00'$ $\boxplus 8^{\circ}30'$ $\boxplus 9^{\circ}00'$ E

GMPE: ASB2014 Computed values ranging between 0.034g and 1.14g (min. and max. computed values might not be visible on the contour map).

 $35^{\circ}\,30'\, \&6^{\circ}\,00'\,\&6^{\circ}\,30'\,\&7^{\circ}\,00'\,\&7^{\circ}\,30'\,\&8^{\circ}\,00'\,\&8^{\circ}\,30'\,\&9^{\circ}\,00'\,\&$

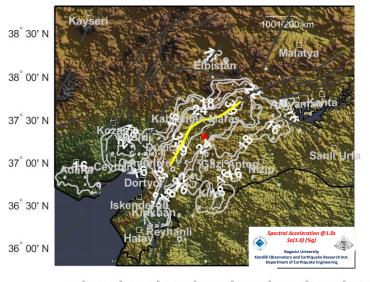


Sa(1.0s) MAPS

Associated fault line automatically chosen from the fault database. Ground motion estimations done without recorded data.

GMPE: CY2008 Computed values ranging between 0.024g and 0.89g (min. and max. computed values might not be visible on the contour map).

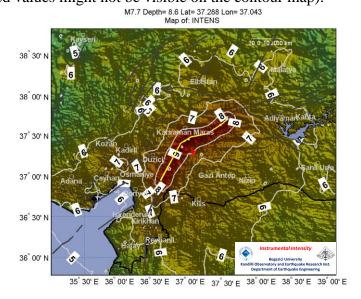
GMPE: CY2014 Computed values ranging between 0.015g and 1.08g (min. and max. computed values might not be visible on the contour map).



 $35^{\circ}\,30'\, \boxplus 6^{\circ}\,00'\, \boxplus 6^{\circ}\,30'\, \boxplus 7^{\circ}\,00'\, \boxplus 7^{\circ}\,30'\, \boxplus 8^{\circ}\,00'\, \boxplus 8^{\circ}\,30'\, \boxplus 9^{\circ}\,00'\, \boxminus$

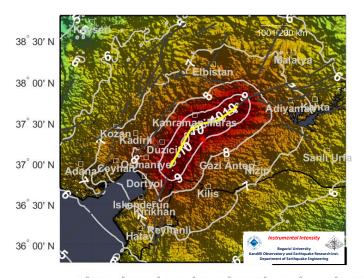
GMPE: ASB2014 Computed values ranging between 0.043g and 0.59g (min. and max. computed values might not be visible on the contour map).

 $35^{\circ}\,30'\, \&6^{\circ}\,00'\,\&6^{\circ}\,30'\,\&7^{\circ}\,00'\,\&7^{\circ}\,30'\,\&8^{\circ}\,00'\,\&8^{\circ}\,30'\,\&9^{\circ}\,00'\,\&$



INTENSITY MAPS

Associated fault line automatically chosen from the fault database. Ground motion estimations done without recorded data.


GMPE : CY2008

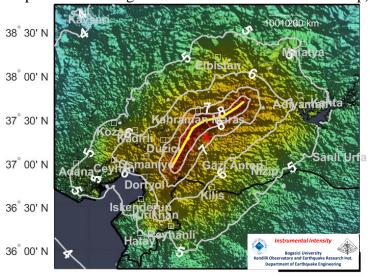
Intensity Equation : **AK2007** Computed values ranging between 4.8 and 9.4 (min. and max. computed values might not be visible on the contour map).

GMPE : CY2014

Intensity Equation : **BA2014** Computed values ranging between 4.4 and 10.6 (min. and max. computed values might not be visible on the contour map).

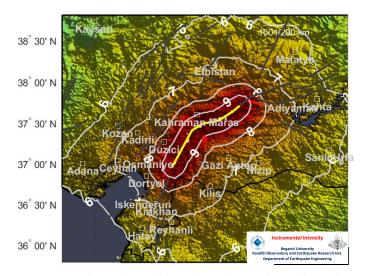
 $35^{\circ}\,30'\, \&6^{\circ}\,00'\,\&6^{\circ}\,30'\,\&7^{\circ}\,00'\,\&7^{\circ}\,30'\,\&8^{\circ}\,00'\,\&8^{\circ}\,30'\,\&9^{\circ}\,00'\,\&9^{\circ}\,10'$

6 February 2023 (04:17) Kahramanmaraş-Türkiye M7.7 Earthquake Preliminary Report (v4)



GMPE : CY2014

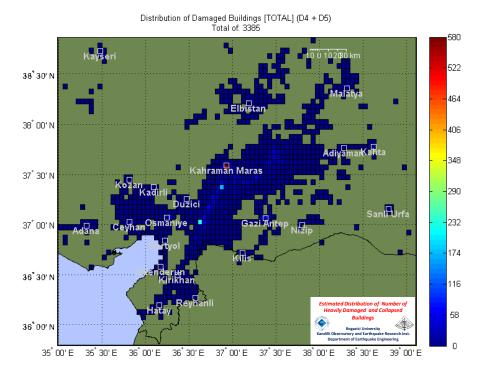
Intensity Equation : WQHK1999 Computed values ranging between 3.5 and 9.1


(min. and max. computed values might not be visible on the contour map).

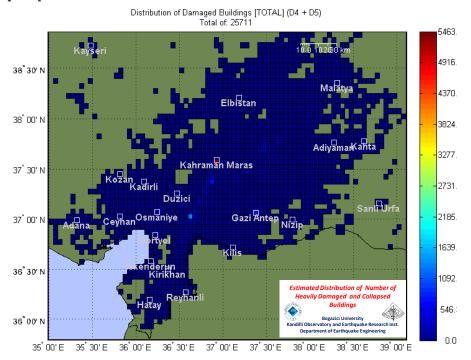
35° 30' B6° 00' B6° 30' B7° 00' B7° 30' B8° 00' B8° 30' B9° 00' E

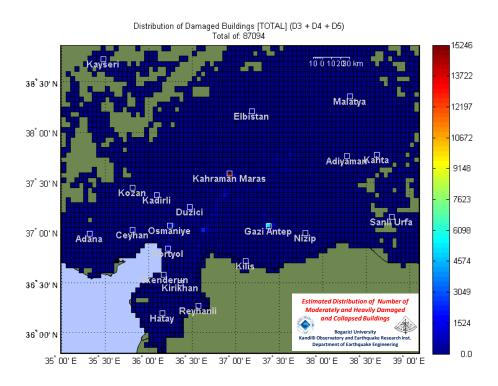
GMPE : ASB2014

Intensity Equation : **BA2014** Computed values ranging between 4.9 and 10.2 (min. and max. computed values might not be visible on the contour map).


 $35^{\circ}\,30'\, \&6^{\circ}\,00'\,\&6^{\circ}\,30'\,\&7^{\circ}\,00'\,\&7^{\circ}\,30'\,\&8^{\circ}\,00'\,\&8^{\circ}\,30'\,\&9^{\circ}\,00'\,\&$

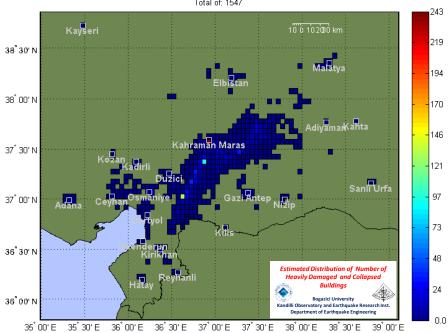
INTESITY BASED ESTIMATION of BUILDING DAMAGE DISTRIBUTION (REGIONAL SCALE)

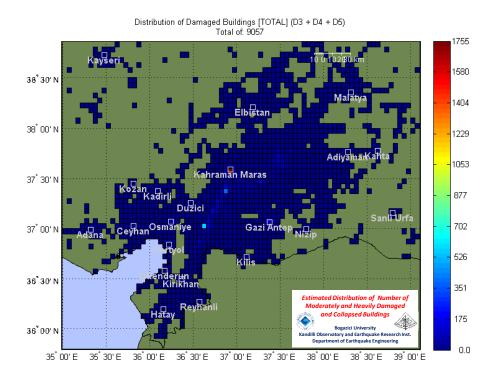

GMPE : CY2008 Intensity Equation : AK2007



GMPE : CY2014 Intensity Equation : BA2014

6 February 2023 (04:17) Kahramanmaraş-Türkiye M7.7 Earthquake Preliminary Report (v4)

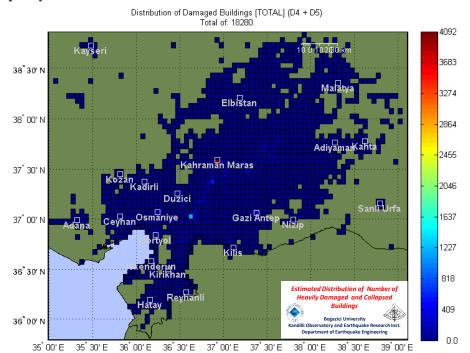


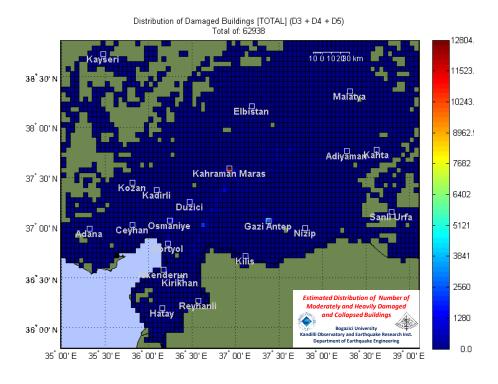


GMPE : CY2014

Intensity Equation : WQHK1999

Distribution of Damaged Buildings [TOTAL] (D4 + D5) Total of: 1547




6 February 2023 (04:17) Kahramanmaraş-Türkiye M7.7 Earthquake Preliminary Report (v4)

GMPE : ASB2014 Intensity Equation : BA2014

6 February 2023 (04:17) Kahramanmaraş-Türkiye M7.7 Earthquake Preliminary Report (v4)

SPECTRAL ACCELERATION-DISPLACEMENT BASED ESTIMATION of BUILDING DAMAGE DISTRIBUTION for KAHRAMANMARAS CITY

It is estimated that approximately 40% of the city's building inventory in (moderate+extensive+complete) damage state.

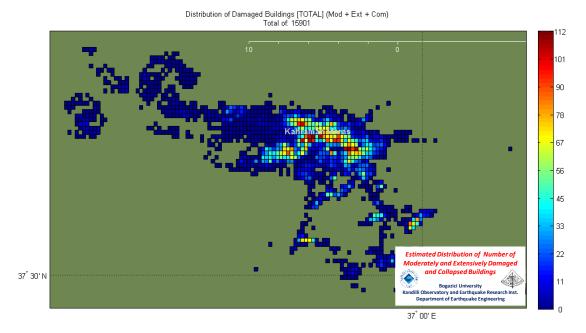
Modified Acceleration-Displacement Response Spectrum (MADRS) Method

	Gro	ound Motion I			
Damage State	CY2008	ASB2014	CY2014	Average	% of total number of buildings
Complete	725	652	1415	931	2%
Extensive	3396	3069	5234	3900	9%
Moderate	11780	11330	14018	12376	27%
Slight	13387	13374	12943	13235	29%
None	16511	17373	12189	15358	34%

Capacity Spectrum Method (CSM)

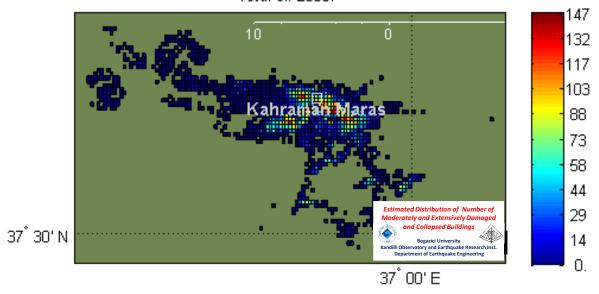
	Groui	nd Motion	Input		
Damage State	CY2008	ASB2014	CY2014	Average	% of total number of buildings
Complete	1584	1563	3428	2192	5%
Extensive	4498	4909	7406	5604	12%
Moderate	11681	12885	12698	12421	27%
Slight	11867	12329	9826	11341	25%
None	16168	14112	12440	14240	31%

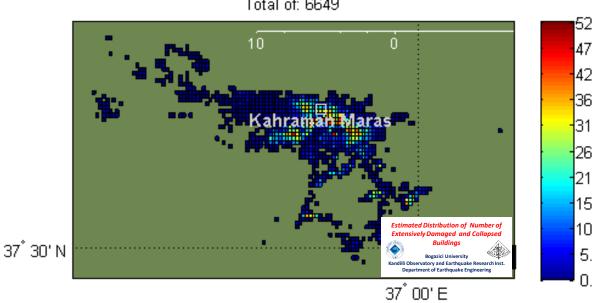
Displacement Coefficient Method (DCM)


	Grou	nd Motion	Input			
Damage State	CY2008	ASB2014	4 CY2014 Aver		% of total number of buildings	
Complete	744	456	1060	753	2%	
Extensive	3785	2613	4782	3727	8%	
Moderate	12882	10913	14192	12662	28%	
Slight	13816	13825	13540	13727	30%	
None	14571	17991	12224	14929	33%	

Spatial distributions of the number of damaged buildings from MADRS method presented in the following maps.

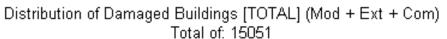
GMPE: CY2008

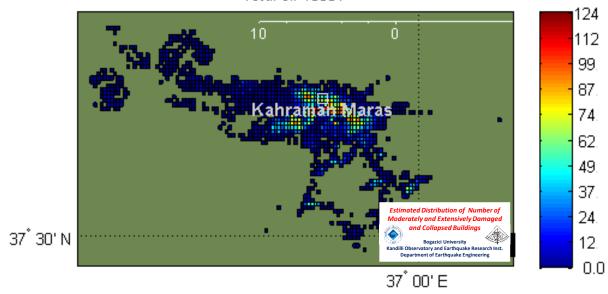


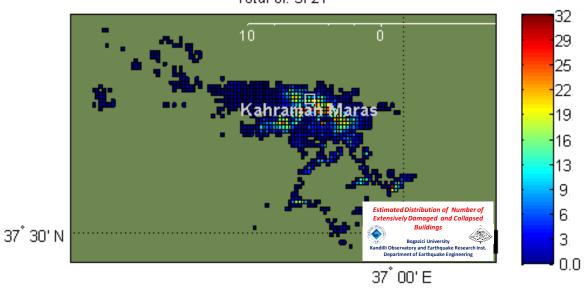


GMPE: CY2014

Distribution of Damaged Buildings [TOTAL] (Mod + Ext + Com) Total of: 20667


Distribution of Damaged Buildings [TOTAL] (Ext + Com)
Total of: 6649





GMPE: ASB2014

Distribution of Damaged Buildings [TOTAL] (Ext + Com)
Total of: 3721

References

AFAD – For strong ground motion records https://tadas.afad.gov.tr/

AK2007 - Gail M. Atkinson; and SanLinn I. Kaka (2007). Relationships between Felt Intensity and Instrumental Ground Motion in the Central United States and California, Bulletin of the Seismological Society of America (2007) 97 (2): 497–510.

ASB2014 - Akkar, S., Sandıkkaya, M.A. and Bommer, J.J., 2014. "Empirical ground-motion models for point- and extended- source crustal earthquake scenarios in Europe and the Middle East," *Bulletin of Earthquake Engineering*, 12(1), 359-387.

BA2008 - Boore, D. M., and Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake spectra, 24(1), 99-138.

BA2014 - M. Bilal and A. Askan (2014). Relationships between Felt Intensity and Recorded Ground-Motion Parameters for Turkey,"Bulletin of the Seismological Society of America , 104(1).

BSSA2014 - Boore, D. M., Stewart, J. P., Seyhan, E., and Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057-1085.

CSM (Capacity SpectrumMethod) - ATC-40: Seismic evaluation and retrofit of concrete buildings, Applied Technology Council, Redwood City, California, USA, 1996.

CB2014 - Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087-1115.

CY2008 - Chiou, B. and Youngs, R. R.: An NGA model for the average horizontal component of peak ground motion and response spectra, Earthquake Spectra 2008; 24(1): 173-215.

CY2014 - Chiou, Brian S.-J. et al. Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra (2014),30(3): 1117.

DCM (Displecement Coefficient Method) - ASCE/SEI 41-06: Seismic rehabilitation of existing buildings, American Society of Civil Engineers, USA, 2006.

MADRS (Modified Acceleration-Displacement Response Spectrum) Method - FEMA 440: Improvement of nonlinear static seismic analysis procedures, Federal Emergency Management Agency, Applied Technology Council, Washington D.C., USA, Rep. no. 440, 2005.

MTA (Mineral Research & Exploration General Directorate) - Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş. ve Şaroğlu, F., 2013, Açıklamalı Türkiye Diri Fay Haritası. Ölçek 1:1.250.000, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara-Türkiye. ISBN: 978-605-5310-56-1.

TBDY (2018) - Turkish Earthquake Building Code. DD2-10% in 50yrs design basis ground motion level.

WQHK1999 - Wald, D. J., V. Quitoriano, T. H. Heaton, H. Kanamori (1999). Relationship between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity for Earthquakes in California, Earthquake Spectra, Vol. 15, No. 3, 557-564.